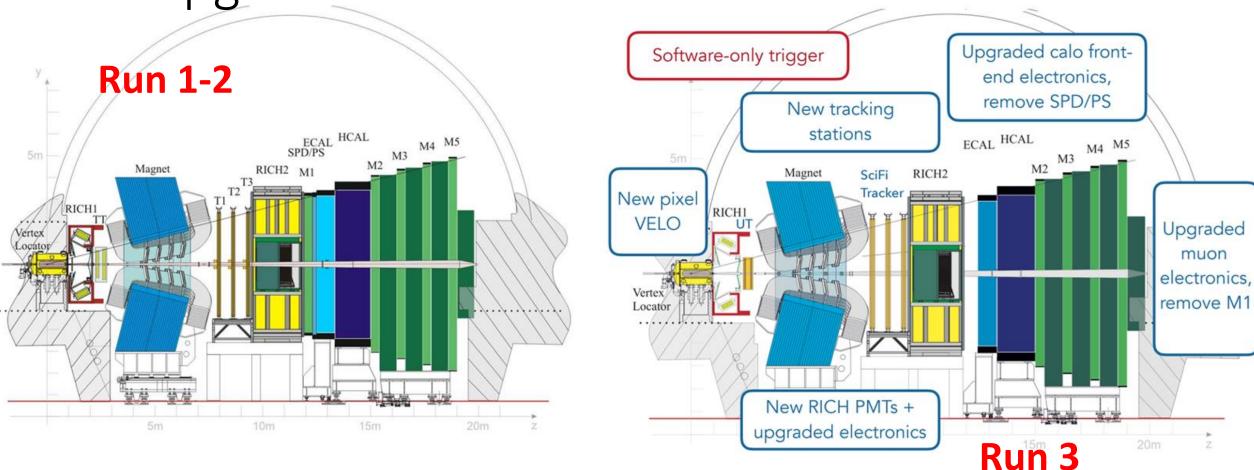
Эксперимент LHCb — обзор физических результатов

Дзюба Алексей, ЛБФ ОФВЭ

27 декабря 2023 года


НИЦ «Курчатовский институт» — ПИЯФ

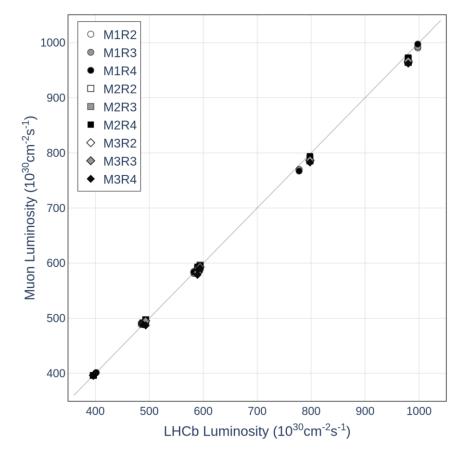
План доклада

- Cтатус LHCb
 - Обслуживание Мюонной системы LHCb (смены / новые камеры / измерение светимости)
 - Проблемы с детектором VELO
- Основные результаты 2023 года
 - Проверка принципа лептонной универсальности
 - Измерения параметров треугольников унитарности
 - Адронная спектроскопия

LHCb Upgrade

https://hepd.pnpi.spb.ru/hepd/events/abstract/2022/HEPD_Seminar_Maev.O.E_12.04.2022.mp4

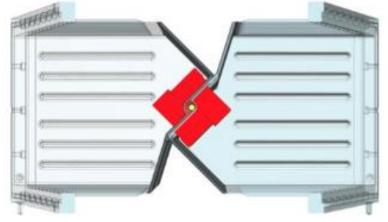
- Группа НИЦ «Курчатовский институт» ПИЯФ осуществляла техническую поддержку
 Мюонной системы эксперимента, которая была полностью готова к набору статистики
- Полностью выполнены обязательства института по участию в дежурных сменах эксперимента LHCb


Производство камер высокой гранулярности

- Камеры механически изготовлены
- После успешного прохождению тестов всеми 15 камерами, они будут готовы к транспортировке в ЦЕРН для введения в эксплуатацию в Мюонного детектора установки LHCb.

Мюонная система LHCb — как измеритель светимости

- Проведено исследование, целью которого была проверка возможности мониторинга светимости в детекторе LHCb с использованием мюонной системы эксперимента
- Два метода:
 - С использованием среднего ток по регионам и станциям детектора,
 - Мониторинг токов на 276 кластерах системы.
- Методы продемонстрировали хорошее согласие с результатами детектора PLUME, а также калориметра.
- Разработана программа контроля светимости при помощи мюонного детектора в режиме набора данных детектора LHCb.


Сравнение светимостей, измеренных при помощи метода анализа счетов фронтенд электроники мюонной системы и измеренной при помощи калориметра светимости в ходе первого и второго этапа набора данных БАК

5

Инцидент с детектором VELO

- Инцидент произошел 10 января 2023 года во время нагрева VELO в неоне.
- Очень тонкие фольги, разделяющие вакуум LHC и VELO, подверглись пластической деформации до ~15 мм в сторону пучка → их необходимо заменить.
- Детектор не поврежден.
- Замена фольги при остановке в конце 2023 года
- VELO не мог быть полностью закрыт в 2023 году -> данные 2023 не годятся для физики тяжелых ароматов

Физические задачи LHCb

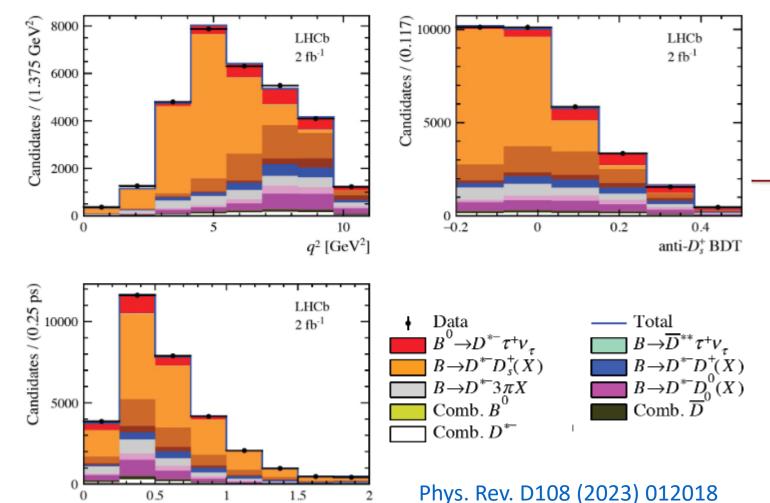
- Проверка предсказания Стандартной Модели (СМ) и эффектов за её пределами путем выполнения прецизионных измерений в секторе тяжелых ароматов, используя редкие (подавленные в СМ) распады.
- Измерение параметром матрицы кваркового смешивания (ККМ-матрица) различными методами. Проверка выполнения условий унитарности.
- Изучение эффектов *CP*-нарушения известных в CM, а также поиск новых источников *CP*-нарушения.
- Спектроскопия адронов. Поиск новых адронных состояний, в том числе экзотических (тетракварков и пентакварков).
- Измерения в электрослабом секторе СМ.
- Изучение столкновения протонов БАК с ядрами как в режиме покоящейся мишени, так и в коллайдерной моде.

Заряженные токи (распады $B \rightarrow D\tau v$)

• К сожалению, эффект нарушения принципа лептонной универсальности в «петлевых» (дилептонных) распадах прелестных мезонов не подтвердился (см. результаты 2022).

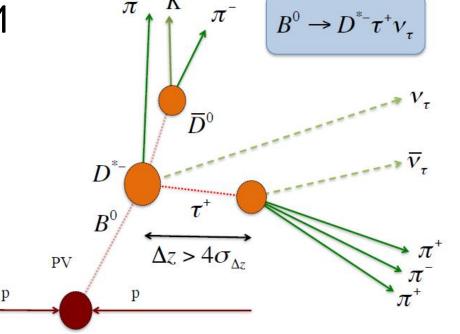
CM

- Древесные диаграммы
- Плохие фоновые условия

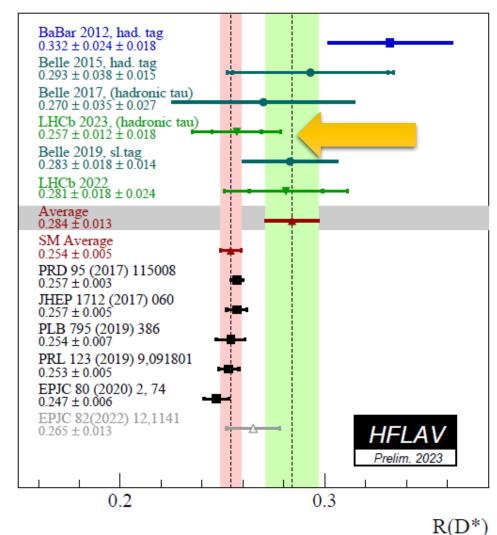

$$R(D^*) = \frac{B(B^0 \to D^{*-}\tau^+\nu_{\tau})}{B(B^0 \to D^{*-}\mu^+\nu_{\mu})} \qquad R(D)_{\text{SM}} = 0.299 \pm 0.003$$
$$R(D^*)_{\text{SM}} = 0.258 \pm 0.005$$

$$R(D)_{SM} = 0.299 \pm 0.003$$

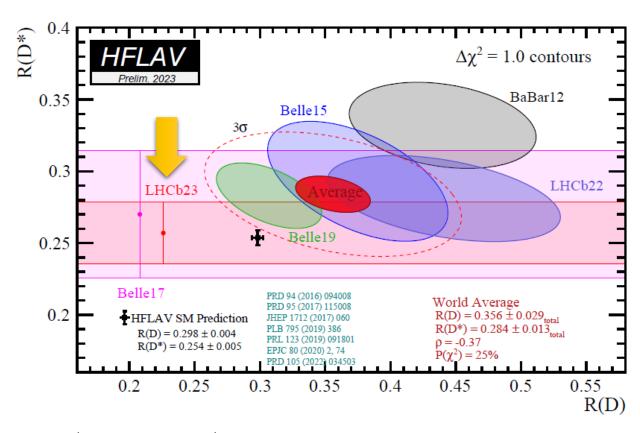
 $R(D^*)_{SM} = 0.258 \pm 0.005$


- Чувствительно к любым проявлениям НФ, которые связаны с третьим поколением лептонов
- Поиск на Belle, BaBar и LHCb

Проверка принципа лептонной универсальности



 t_{τ} [ps]



- В 2023 году LHCb исследовал R(D*), используя адронные распады тау
- Сложные фоновые условия (Монте-Карло + контроль на данных)

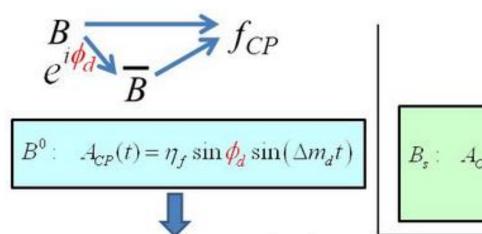
Лептонная универсальность (распады $B \to D \tau v$)

Расхождение мировых данных с предсказаниями СМ 3σ

 1σ -контуры и 1σ -полосы вероятности для различных измерений $\mathbf{R}(D^\theta)$ и $\mathbf{R}(D^*)$. Объединение результатов различных экспериментов показано красным. Пунктирной линией показан 3σ -контур для объединения результатов различных измерений. Предсказания СМ показаны черной точкой

Матрица кваркового смешивания

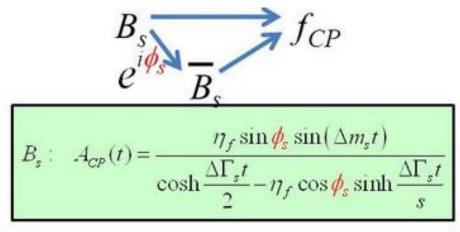
- Собственные состояния кварков по слабому взаимодействию и по аромату различны
- Матрица смешивания (Кабиббо-Кобаяши-Маскава)
- Два поколения нет CPV, три поколения одна CPV-фаза
- Эл-ты ККМ-матрицы входят в амплитуды переходов
- Параметризация Вольфенштейна


$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\varrho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \varrho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{d}' \\ \mathbf{s}' \\ \mathbf{b}' \end{pmatrix} = \begin{pmatrix} V_{\mathrm{ud}} & V_{\mathrm{us}} & V_{\mathrm{ub}} \\ V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \\ V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}} \end{pmatrix} \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix} = V_{\mathrm{CKM}} \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{b} \end{pmatrix}$$

ения —
$$I(d \to u) \propto i \frac{g_2}{2\sqrt{2}} \bar{u} V_{ud} \gamma_{\mu} (1 + \gamma_5) d$$
 $A(u \to d) \propto i \frac{g_2}{2\sqrt{2}} \bar{d} V_{ud}^* \gamma_{\mu} (1 + \gamma_5) u$ V_{ud} V_{ud}

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\varrho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \varrho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4). \qquad s_{12} = \lambda, \quad s_{23} = A\lambda^2, \quad s_{13} \exp(-i\delta) = A\lambda^3(\varrho - i\eta) \\ s_{12} = \lambda = 0,222 \pm 0,002, \quad s_{23} = O(10^{-2}), \quad s_{13} = O(10^{-3})$$


Проявления *CP*-нарушения (при интерференции прямых распадов и смешивания) _

"Golden mode"

 $\rightarrow \sigma(\sin 2\beta) \sim 0.02$

Proper time (ps)

Позволяет извлекать СР-нарушающую фазу матрицы кваркового смешивания

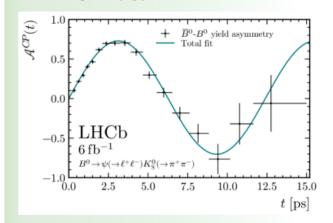
Channel	Yield (2 fb ⁻¹)	B/S	
Bd→J/ψKs	216 k	0.8	

Измерение параметров треугольника унитарности

Нейтральные токи с изменением кварковых ароматов и редкие распады К-мезонов \ Л.Г. Ландсберг

https://ufn.ru/ru/articles/2003/10/a/

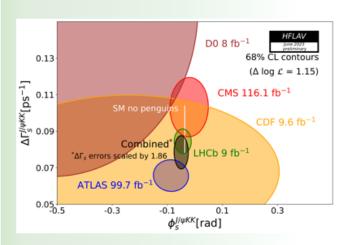
Прецизионное измерение параметров нарушения СР инвариантности в распадах прелестных мезонов в эксперименте LHCb на Большом адронном коллайдере (БАК)

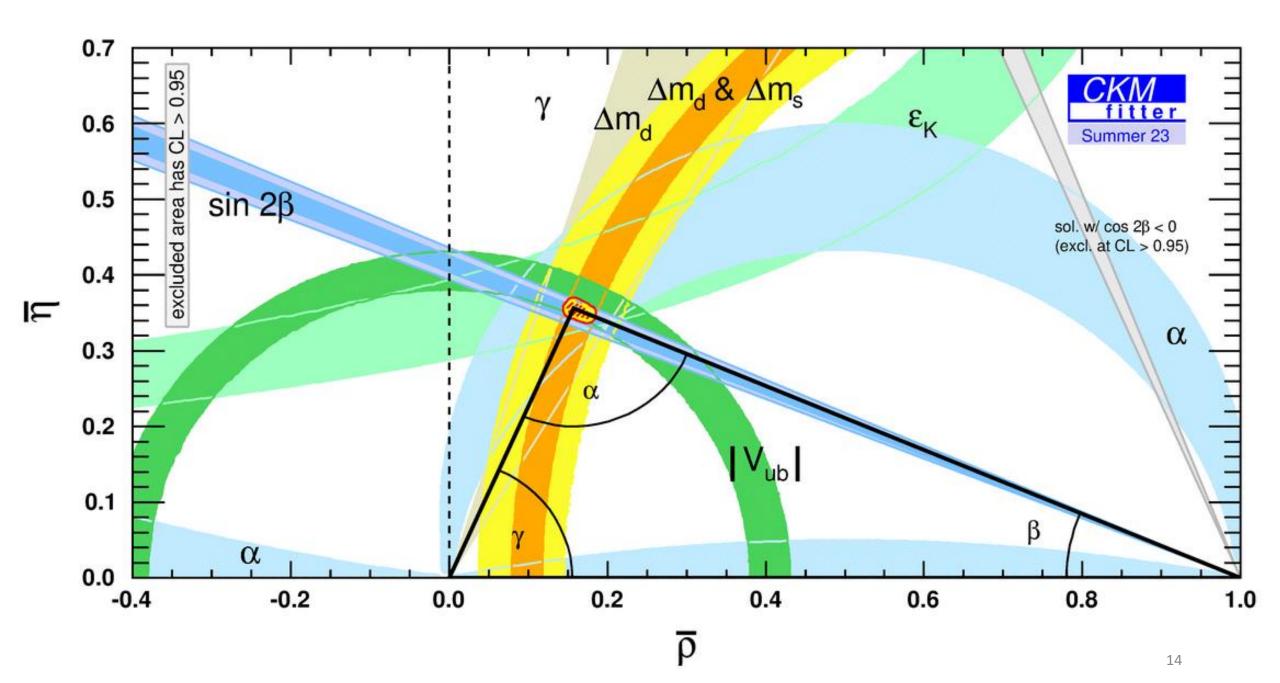

Нарушении СР четности, одно из условий, необходимых для объяснения образования барионной асимметрии Вселенной (А.Д. Сахаров)

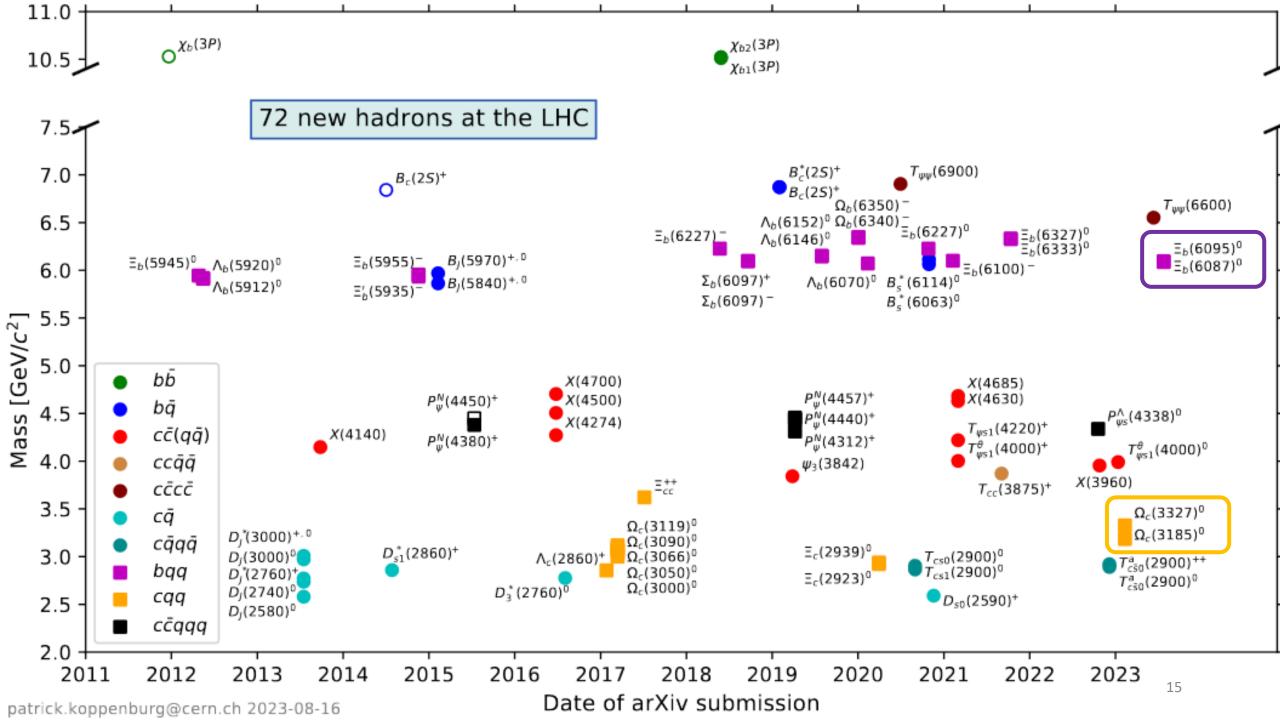
- СР инвариантность нарушена в кварковом секторе Стандартной Модели (СМ);
- Ожидается, что проявления новой физики, выходящей за пределы СМ, связаны с заметным нарушением СРчетности;
- Наблюдаемые φ_s и sin(2β) могут быть точно рассчитаны в рамках СМ так как зависят от параметров матрицы кваркового смешивания;
- LHCb измеряет φ_s и sin(2β), изучая характеристики распадов прелестных мезонов (B_s^0 и B^0).

$$\triangleright \quad \phi_{\mathbf{s}} \colon \mathbf{B}_{\mathbf{s}}^{\ 0} \to \psi(\to \mu^+\mu^-) \ \phi(\to K^+K^-)$$

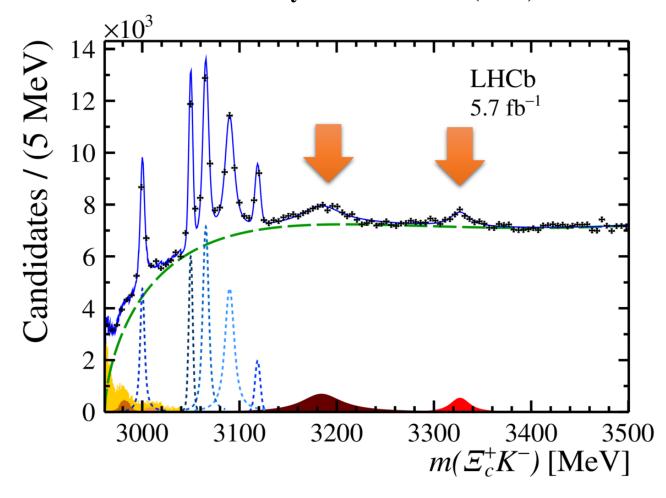
- > $sin(2β) : B^0 \rightarrow \psi(\rightarrow \mu^+\mu^-) K_S^0(\rightarrow \pi^+\pi^-)$
- Регистрация мюонов необходима для надежного выделения сигнальных событий
- Мюонная система LHCb разработана, создана и эксплуатируется сотрудниками НИЦ «Курчатовский институт» – ПИЯФ


Например, распределение для зависящей от времени СР-асимметрия, для распадов $B^0 o \psi(\to \mu^+\mu^-) K_S{}^0(\to \pi^+\pi^-)$ свидетельствует о нарушении СР инвариантности и позволяет извлечь величину sin(2_β)


Результаты

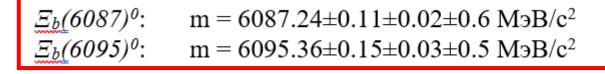

$$ho_s = -0.039 \pm 0.022_{ctat} \pm 0.006_{cuct}$$

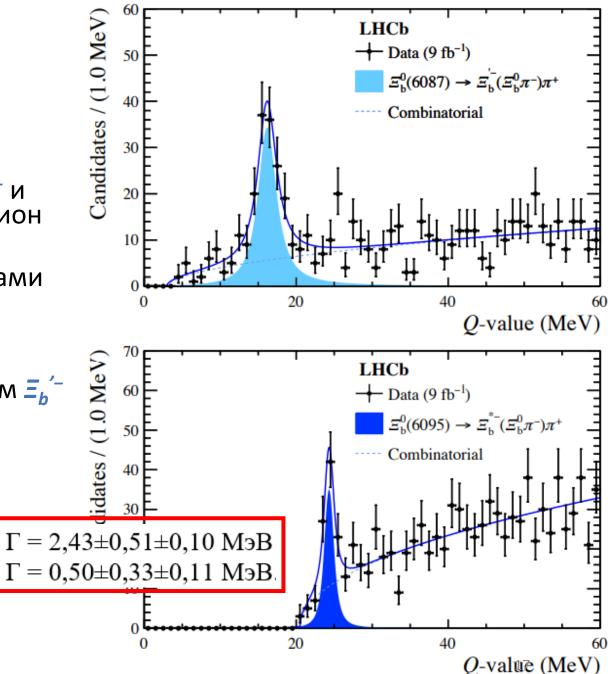
$$ightharpoonup$$
 sin(2 ho) = 0,717 ± 0,013_{ctat} ± 0,008_{cuct}


Полученные значения Ф и sin(2β) являются самыми точными на сегодняшний день и находятся в хорошем согласии в пределах имеющихся неопределенностей как с результатами предыдущих измерений, так и с arXiv:2309.09728 предсказаниями СМ

$\Omega_c(3185)^0$ и $\Omega_c(3327)^0$

- В 2015 году эксперимент LHCb объявил об одновременном открытии пяти возбужденных состояний Ω_c^{*0} , которые наблюдались в $\Xi_c^{+}K^-$ канале его распада.
- Эти исследования были продолжены в том числе с использованием статистики, накопленной в ходе второго этапа работы БАК.
- Новый анализ данных показал, что помимо пяти узких пиков, в спектре инвариантной массы системы $\equiv_c^+ K^-$ наблюдаются еще две широкие (резонансные) структуры.

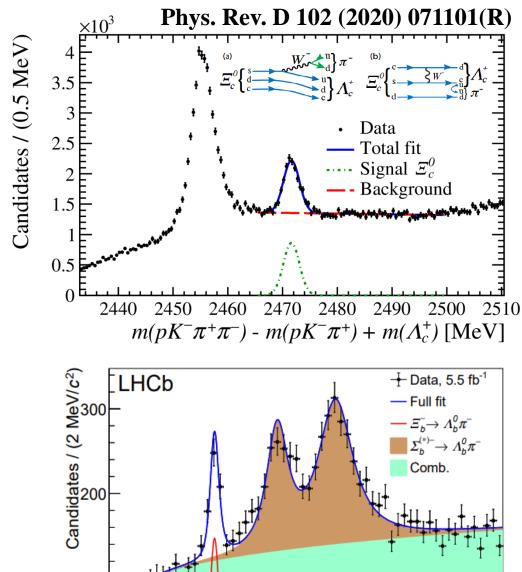



$$\Omega_c(3185)^0$$
: m = 3185.1 ± 1.7^{+7.4}_{-0.9}±0.2 MэB/c² $\Omega_c(3327)^0$: m = 3327.1 ± 1.2 ^{+0.1}_{-1.3}±0.2 MэB/c²

$$\Gamma = 50 \pm 7^{+10}_{-20} \text{ M} \Rightarrow \text{B}$$

 $\Gamma = 20 \pm 5^{+13}_{-1} \text{ M} \Rightarrow \text{B}$

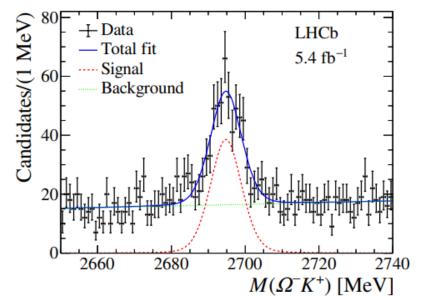
$\Xi_b(6087)^0$ и $\Xi_b(6095)^0$

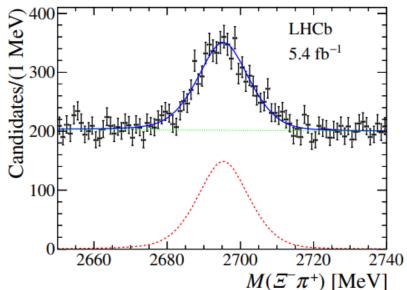

- Новые состояния наблюдались в спектре масс $= \frac{1}{2} \int_{0}^{0} \pi^{+} \pi^{-}$
- Сам барион восстанавливался из распадов $\Xi_c^+\pi^-$ и $\Xi_c^+\pi^-\pi^+\pi^-$, а соответствующий очарованный барион выделялся в массовом спектре $pK^-\pi^+$.
- Большое число треков с определенными зарядами позволило сильно подавить фон случайных совпадений.
- Использовались только те события-кандидаты, которые соответствовали известным резонансам $\Xi_b^{'-}$ и Ξ_b^{*-} (требование на массу промежуточной системы $\Xi_b^{\ 0}\pi^-$)
- $Q = m(\Xi_b \pi \pi) m(\Xi_b) 2m_{\pi}$.

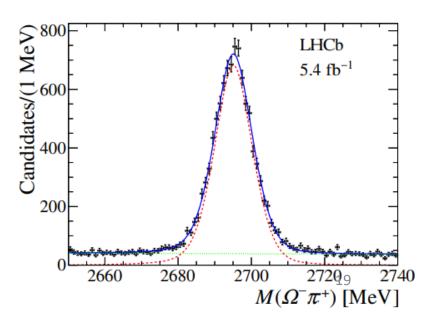
Распад *s*-кварка в тяжелом барионе

- Для набора данных рр взаимодействий происходящих при энергии 13 ТэВ эксперимент LHCb впервые наблюдал распад $\bar{\Xi}_b^- \!\!\!\! \to \!\! \Lambda_b^{\ 0} \pi^-$
- Распад интересен тем, что в нем прелестный кварк (b) выступает в роли наблюдателя, а распадается странный кварк (s).
- Некоторые теоретические модели предсказывают повышенную вероятность таких распадов.
- Используя известные из литературы значения отношений функций фрагментации $f_{\equiv b} / f_{\Lambda b0}$ удалось измерить вероятность открытого канала распада:
- $B(\bar{z}_b \rightarrow \Lambda_b^0 \pi^-) = (0.89 \pm 0.10 \pm 0.07 \pm 0.29) \%$
- Это значение отметает некоторые теоретические модели, описывающие распад

Phys. Rev. D 108 (2023) 072002 $M(\Lambda_b^0 \pi^-) - M(\Lambda_b^0) - m_{\pi^-} [MeV/c^2]$


 $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- (\pi^+ \pi^-)$


Свойства тяжелых барионов


Распады $\Omega_c^{\ o}$ барионов (кварковый состав ssc), подавленные по недиагональным элементам матрицы кваркового смешивания, т.е. так называемые Кабиббо-подавленные распады

В распаде $\Omega_c^0 \to \Xi^- \pi^+$ подавление идет на первом шаге кварковой диаграммы ($c \to dW[\to ud]$), а в распаде $\Omega_c^0 \to \Omega^- K^+$ на втором ($c \to sW[\to us]$)

$$\begin{split} &B(\varOmega_c{}^0\!\!\to\!\!\varOmega^-\!\!K^+)/B(\varOmega_c{}^0\!\!\to\!\!\Omega^-\!\!\pi^+) = 0.0608 \pm 0.0051_{\mathtt{CTAT}} \pm 0.0040_{\mathtt{cHCT}}, \\ &B(\varOmega_c{}^0\!\!\to\!\!\varSigma^-\!\!\pi^+)/B(\varOmega_c{}^0\!\!\to\!\!\Omega^-\!\!\pi^+) = 0.1581 \pm 0.0087_{\mathtt{CTAT}} \pm 0.0043_{\mathtt{cHCT}} \pm 0.0016_{\mathtt{cHCT2}} \\ &m(\varOmega_c{}^0) = 2695.28 \pm 0.07_{\mathtt{CTAT}} \pm 0.27_{\mathtt{cHCT}} \pm 0.30_{\mathtt{cHCT2}} \ \mathrm{MeV/c^2} \end{split}$$

Заключение

- Эксперимент LHCb на БАК нацелен на:
 - Поиск указаний на существование Новой физики в редких распадах прелестных адронов,
 - Уточнение параметров СМ, ответственных за нарушение *CP*-четности, а также поиск новых источников *CP*-нарушение за пределами СМ.
 - Спектроскопию тяжелых адронов (в том числе экзотических)
- В настоящее время в НИЦ КИ ПИЯФ завершается производство новых многопроволочных пропорциональных камер высокой гранулярности для Мюонной системы детектора LHCb, рассчитанных на работу в условиях высокой загрузки.
- Группа ОФВЭ осуществляла техническое сопровождение Мюонной системы детектора LHCb :
 - Мюонная система детектора успешно эксплуатировалась
 - Измерение светимости при помощи Мюонного спектрометра
- Основные результаты LHCb, представленные в 2023 году:
 - Проверка принципа лептонной универсальности в распадах прелестных адронов
 - Проверка предсказаний КМ-механизма (параметры СР нарушения)
 - Спектроскопия тяжелых адронов